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The effects of nitric oxide on the immune 
response during giardiasis 
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ABSTRACT

Nitric oxide (NO) is a free radical synthesized from L-arginine by different isoforms NO-synthases. 
NO possesses multiple and complex biological functions. NO is an important mediator of home-
ostasis, and changes in its generation or actions can contribute or not to pathological states. The 
knowledge of effects of NO has been not only important to our understanding of immune response, 
but also to new tools for research and treatment of various diseases. Knowing the importance of 
NO as infl ammatory mediator in diverse infectious diseases, we decided to develop a revision that 
shows the participation/effect of this mediator in immune response induced against Giardia spp. 
Several studies already demonstrated the participation of NO with microbicidal and microbiostatic 
activity in giardiasis. On the other hand, some works report that Giardia spp. inhibit NO production 
by consuming the intermediate metabolite arginine. In fact, studies in vitro showed that G. lamblia 
infection of human intestinal epithelial cells had reduced NO production. This occurs due to limited 
offer of the crucial substrate arginine (essential aminoacid for NO production), consequently reduc-
ing NO production. Therefore, the balance between giardial arginine consumption and epithelial 
NO production could contribute to the variability of the duration and severity of infections by this 
ubiquitous parasite.
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INTRODUCTION

Nitrogen monoxide, also called nitric oxide 
(NO) is a radical with a small molecular weight 
(30 kDa) that performs multiple biological 
activities.1,2 Since its discovery, an increasing 
number of studies have attempted to address 
the biochemistry of this freely diffusible second 
messenger and the connections with its biolog-
ical properties. This molecule became the focus 
of intensive biological and clinical research.3,4 
As a consequence, pharmaceutical industries 
have shown increasing interest in NO manipu-
lation in the last years, because this free radical 
could be used as a potential therapeutic target 
in a vast variety of conditions, ranging from in-
fl ammation to degenerative diseases.

It is known that NO can directly and indi-
rectly modulate the immune response through 
diverse mechanisms such as mediating mi-
crobicidal effects of NO-derived free radicals, 
mostly within macrophages and other phago-
cytes. Modulation of leukocyte effector mecha-

nisms during the infection has been also ob-
served. However, due to its regulatory effects, 
NO plays a dual role in the elicited response, 
dictated by the concentration in the infl amma-
tory microenvironment. Of note, a deregulated 
NO production is observed in infected individ-
uals, which is associated with collateral toxic-
ity for host cells, leading to immunopathology, 
autoimmune responses or persistence of the 
parasite due to immune evasion. 

Nitric oxide production 
From an evolutionary point of view, NO for-
mation may have originated as a fi rst-line de-
fense for metazoan cells against intracellular 
pathogens. This is confi rmed by the wide oc-
currence of the enzyme responsible for NO 
production: NO-synthase (NOS) responses in 
several species, ranging from invertebrates such 
as Limulus polyphemus,5 insects,6,7 to mammals 
and non-mammal vertebrates.8-10 The NO sig-
naling mechanisms would evolve only later 
for signaling. In mammals, the NO response is 
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raised in response to infection by a wide variety of intra-
cellular pathogen unicellular organisms such as bacteria, 
yeast and parasites (e.g., Leishmania spp. and T. cruzi).11 It 
appears that evolutionary diversity has been acquired at the 
level of the transcription factors involved in NO synthesis in 
response to different kinds of stress stimuli. 

Three forms have been described: neuronal (nNOS, NOS1), 
endothelial (eNOS, NOS3) and inducible (iNOS, NOS2).12,13 
The fi rst two are constitutively expressed (NOS1 and 
NOS3), but can also be upregulated to release substan-
tial amounts of NO mainly in the central and peripheral 
nervous system and vascular endothelial cells, respective-
ly. The iNOS is induced mainly in macrophages, but can 
be induced in a vast variety of cells when stimulated by 
cytokines and polysaccharides. NO is biosynthesized by 
one of the NO synthases (NOS) in an oxidative reaction 
that mediates the incorporation of molecular oxygen (O2) 
into the unstable intermediate NO-hydroxy-L-arginine 
(NOHA), and subsequently into L-citrulline. 

This reaction consumes reducing equivalents in the form 
of NADPH. The fi nal products of this reaction are NADP+, 
L-citrulline and NO.14 

L-arginine is the main substrate for NO synthesis. 
The participation of L-arginine in the infl ammatory re-
sponse may occur through two basic mechanisms: (I) as pre-
cursor for NO production through the activation of iNOS, 
mainly in macrophages; and (II) as precursor for the synthe-
sis of metabolites required for T lymphocyte proliferation 
and effector function.15,16 

The regulation of NO synthesis within cells can be ex-
erted at various checkpoints such as: compartmental dis-
tribution of NOS, changes in NOS gene expression, enzy-
matic competition by Arginase. Arginase activity is a major 
regulatory mechanism for NO biosynthesis. It leads to the 
production of ornithine and urea. Moreover, it can modu-
late infl ammatory response at several levels including (I) the 
production of ornithine, a precursor of proline, favoring 
cellular regeneration, wound healing and repair;17 (II) the 
production of polyamines, also from ornithine, which can 
regulate macrophage function;18 (III) regulating arginine 
availability and, therefore, decreasing NO production and 
other arginine mediated processes such as normal T lym-
phocyte proliferation.19 The decisive mechanism by which 
L-arginine affects the balance of the cellular immune response 
is ultimately determined by the predominant cytokine pat-
tern expressed in a given pathogenic process. While NO syn-
thases are induced or up-regulated mainly during T-helper 
1 infl ammatory conditions, the arginase system is mainly in-
duced in macrophages, when the predominance of T-helper 
2 cytokines.20 Moreover, uncoupling NOS from L-arginine 
results in the generation of NO scavenger, superoxide, and 
peroxynitrite, repression of the translation and stability of 
inducible NOS protein, inhibition of inducible NOS activity 

via the generation of urea, and by sensitization of NOS to its 
endogenous inhibitor, asymmetric dimethyl-L-arginine.21 

Moreover, they are also differentially modulated accord-
ing to the stimulus and the type of cytokines present in the 
infl ammatory microenvironment.20 The products and inter-
mediary molecules from both pathways act as modulators of 
the immune response. 

The expression and activity of enzymes involved in NO 
synthesis are differentially modulated depending on different 
biological milieu conditions.13,22 The diverse actions of NO 
could be explained by its capacity to chemically attack several 
molecules containing metals. Moreover, soluble mediators of 
immune responses can differentially modulate the inducible 
isoform of NOS. It can be quickly enhanced in cells of the 
innate23 and adaptive immune response after some cytokines 
are produced, mainly IFNg, TNFa, IL-1b. These cytokines are 
produced in response to pathogen associated molecular pat-
terns (PAMPs), which can be sensed mainly by the action 
of pattern recognition receptors (PRR), such as Toll-like 
receptors (TLRs).24,25 Signaling through these innate im-
mune recognition receptors leads to activation of tran-
scription factors NF-κB and AP-1, which regulate the ex-
pression of iNOS.26 

Effects of nitric oxide on the immune system

One of the most prominent functions of NO in the im-
mune system is its participation in protective immunity 
against various intracellular pathogens including vi-
ruses, bacteria and protozoa. Furthermore, the killing 
activity of NO has also been showed effective in host 
defense against tumor cells27 and alloantigens.28 Consid-
ering its direct microbial toxicity, NO can exert a micro-
biostatic or microbicidal effect, or even act as a micro-
bial metabolic product.29 Although these direct cellular 
effects of NO over pathogen biology are not yet fully 
understood, the strong oxidative capacity of NO and 
its sub-products appears to act in synergism with other 
lethal reactive oxidant species (H2O2, etc), accounting 
for most of the host’s microbial toxicity. Peroxynitrite 
(ONOO) induces modifications of selected molecu-
lar targets in a parasite and is a major mechanism for 
direct effects of NO, and such targets are starting to 
be revealed.30-33 Peroxynitrite can induce nitration of 
tyrosine residues as well as the reversible binding of NO 
to metal centers in microbial targets that are involved in 
vital processes, including nutrition and respiration. In 
various infections, cysteine-containing proteins, metal-
loproteins, calcium transport systems,34 as well as essen-
tial enzymes of energy metabolism35 have been identified 
as important intracellular targets for the toxic actions of 
peroxynitrite. Among them, cysteine proteinases are criti-
cal factors for virulence or replication of many pathogens 
(including viruses, bacteria, fungi, and parasites).36-38
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Depending on the individual characteristics of mol-
ecules, it can lead to either the activation or inactivation of 
the respective protein function. Exacerbated production of 
NO and the consequent exaggerated levels of “reactive nitro-
gen species” (RNS) can unbalance the homeostatic mecha-
nisms of the host, mediating collateral host toxicity and this 
could be the basis for certain pathologies related to nitrosative 
and oxidative stress.39-41 Indeed, the presence of nitrosylated 
tyrosine residues (Nitro tyrosine) has been recognized as an 
indicator of cell damage and infl ammation, as well as of the 
production of ONOO. In addition to the direct toxicity, other 
effects of NO over leukocyte biology were described, which 
can infl uence several physiological processes ranging from 
DNA transcription42 and replication43 to protein synthesis44 
and secretion. The signaling processes through which NO acts 
to regulate immune cells are extremely complex and are only 
just beginning to be revealed, but are largely indirect through 
generation of reactive nitrogen oxide species that chemically 
modify enzymes, signaling proteins and transcription factors. 
The role of NO might depend on the stage of a disease (i.e., 
early or late disease stages). And for a given cell, the response 
to NO will depend on its reactivity state and on the microen-
vironment as well. 

Nitric oxide in giardiasis
Giardia intestinalis is the causative agent of giardiasis, a 
widespread intestinal infectious disease in humans.45 It is 
known that human infection with Giardia lamblia often 
results in severe abdominal cramps and malabsorptive di-
arrhea. While most infections are controlled by an effec-
tive immune response, some individuals develop chronic 
diseases that occur occasionally in the absence of apparent 
immunodefi ciency.46,47 Have been shown that NOS1, but 
not NOS2, is necessary for clearance of Giardia infection. 
The authors also suggested that increased gastrointestinal 
motility contributes to the parasite elimination and this is 
the fi rst example of NOS1 being involved in the elimination 
of an infection.48 In fact, the intestinal hypermotility is an 
important host mechanism of defense against Giardia. This 
defense appears to depend on the development of a normal 
adaptive immune response against the parasite, as it did not 
occur in mice lacking T and B-cells, although it is possible, 
in principle, that T or B-cells contribute to hypermotility in-
dependent of their role in adaptive antigiardial immunity.49 
It is likely that similar changes in intestinal transit in humans 
contribute to the symptoms associated with this infection. 
However, it is not yet clear what immune mechanisms are 
responsible for effective control of infections.50,51 Therefore, 
further investigation into the pathophysiology of giardiasis 
is needed as no pathogenic mechanisms have yet been iden-
tifi ed. Based on this consideration, the following sections fo-
cus on the importance of specifi c host effector mechanisms 
against Giardia. Elucidation of these mechanisms is not 
only important for understanding mucosal immune defense 

against this parasite, but also provides a crucial basis in the 
rational development of therapeutic strategies for activat-
ing the most effective host defenses against Giardia. It is be-
lieved that antimicrobial products synthesized by epithelial 
cells in the small intestine are good candidates. One of these 
is NO, which has an antimicrobial effect (microbiostatic and 
microbicidal) on a wide range of microorganism52-66 and 
multiple functions, including increased cytotoxicity of acti-
vated macrophages.67 In polarized intestinal epithelial cells, 
the stable NO end products, nitrite and nitrate, are prefer-
entially detected on the apical side,68 suggesting that Giardia 
could be a relevant target for epithelial cell-derived NO and 
its metabolites. The underlying mechanisms for apical NO 
release are not known, but might be related to the prefer-
ential localization of iNOS at the apical side of polarized 
epithelial cells underneath the cell membrane.69,70 Consist-
ent with a role of epithelial cell-produced NO as a poten-
tial antigiardial effector molecule, NO was found to inhibit 
proliferation of G. lamblia trophozoites in vitro, but not to 
kill them.68 Thus, NO was cytostatic rather than cytotoxic 
for trophozoites in these studies. Another report suggested 
that NO can kill trophozoites in vitro,71 although that study 
used minimal media (i.e., buffered salt solution) for cul-
ture, which may have exaggerated the results, as such media 
do not support prolonged trophozoite viability and growth 
even in the absence of NO. In addition, it was observed that 
NO also inhibited G. lamblia excitation and encystations 
of in vitro.68 Growth inhibition may be important for the 
infected host, because local trophozoite growth is probably 
crucial for the ability of G. lamblia to establish and main-
tain infection of the proximal small intestine. In contrast, 
inhibition of encystation by NO could reduce the forma-
tion and passing of infectious cysts and, thereby, transmis-
sion to other potential hosts. 

Fernandes and Assreuy71 studied the role of nitric 
oxide and superoxide in G. lamblia killing and verified 
that from the vast array of cytotoxic molecules poten-
tially produced by defense cells, NO seems to account 
for the majority, if not all, of macrophage giardicidal ef-
fects. The genome from Giardia spp. has been completely 
sequenced,72 leading to the conclusion that Giardia is an 
early diverging protozoon with very simplified metabolic 
pathways. Although Giardia spp. have a relatively poor 
tolerance to O2, they preferentially colonize the fairly 
aerobic upper part of the small intestine (duodenum and 
jejunum). They lack the conventional respiratory oxidas-
es, as well as the systems (catalase, superoxide dismutase, 
glutathione reductase) responsible for the scavenging of 
radical oxygen species (ROS).73 

Data from Li et al.48 involving human infection with G. 
lamblia, indicate that signals mediated by enzymes nitric ox-
ide synthases (NOS1 but not NOS2) play a key role in elimi-
nating this infection.
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The hypothesis of contact of G. lamblia with intestinal 
epithelial cells might lead to release of specifi c proteins.74 
Results have shown host-cell stimulated secretion of giardial 
proteins, which have the potential to be involved in the im-
munological events during initiation of infection and sub-
sequent survival of the parasite in the host. In vitro studies 
with recombinant arginine deiminase showed that the se-
creted Giardia proteins could disable host innate immune 
factors such as nitric oxide production.

Eckmann et al.68 detected that G. lamblia and intes-
tinal epithelial cells compete for arginine and have sev-
eral implications for understanding the pathogen-host 
interaction [between pathogen and host]. According to 
Eckmann, the reduction of arginine availability could be 
considered a virulence mechanism of the pathogen, be-
cause it inhibited epithelial NO production, thereby sub-
verting a potential host defense against G. lamblia. Both 
intestinal epithelial cells and G. lamblia trophozoites have 
highly efficient arginine transporter systems with compa-
rable substrate affinities suggesting that Giardia may have 
an advantage over the host in taking up arginine. Thus, 
in models of human intestinal epithelium, G. lamblia in-
hibited epithelial NO production by consuming arginine, 
the crucial substrate used by epithelial NO synthase to 
form NO. These results indicate that contact of Giardia 
spp. with epithelial cells triggers metabolic enzyme re-
lease, which might facilitate effective colonization of the 
human small intestine.

It is known that the fl avodiiron proteins are widespread 
among strict or facultative anaerobic prokaryotes, where 
they are involved in the response to nitrosative and/or oxi-
dative stress. These fl avodiiron proteins were fairly recently 
identifi ed in a restricted group of microaerobic protozoa, 
including G. intestinalis. Ringqvist et al.74 proposed that in 
G. intestinalis the primary function of fl avodiiron proteins is 
to effi ciently scavenge O2, allowing this microaerobic para-
site to survive in the human small intestine, thus promoting 
its pathogenicity.

B and T-cells, antibodies, cytokines and nitric oxide 
in human giardiasis 

Despite the clinical symptoms, diarrhea, abdominal pain, 
malabsorption and weight loss, infection is not accompa-
nied by signifi cant mucosal infl ammation.75 The infections 
are normally self-limiting, as immunocompetent hosts can 
control and typically eradicate G. lamblia, a process that in-
volves T and B-cells.50,51,76,77

Several studies suggest an important role for B-cells in 
clearing Giardia infection. For example, infections of hu-
mans with G. lamblia result in the production of antigia-
rdial antibodies of the IgA, IgM and IgG isotypes in mucosal 
secretions and serum. The specifi c antibody production cor-
relates with giardial clearance.50,78

Moreover, secretory antibodies of the IgA and IgM iso-
types are attractive candidates for immune defense against 
Giardia spp., because they are secreted in large quantities into 
the intestinal lumen and their actions are antigen-specifi c. 
In this regard, parasite-specifi c IgA antibodies in infected 
children has been evaluated by several investigators.79,80 In 
previous studies, a 31-kD protein and 57-kD heat-shock 
protein (HSP), strong candidates for peptide vaccine, were 
recognized by specifi c IgA antibody to Giardia spp..79 Ad-
ditionally, it was shown by immunoblotting that children 
with chronic infections with G. intestinalis did not 
show an IgA response to the 57-kD G. intestinalis HSP, 
which suggested an impairment of the switch from an IgM 
response to an IgG or IgA response.80

These results together showed that the clearance of hu-
man G. intestinalis infection is dependent on antibodies di-
rected against parasite proteins and T-cell activity. However, 
it remains to be determined if and how cellular immune re-
sponses might contribute to control G. lamblia infections in 
humans.

Of the T-cells, CD4+ but not CD8+ cells are responsi-
ble for cytokine production operating in the recruitment of 
cells and the immunopathogenesis of the disease.81 One of 
the main cytokines that appears to be associated with allergy 
cases in human giardiasis is the IL-6. 

In fact, Mahmoud et al.82 demonstrated that there is a 
direct relationship between IL-6 levels increases and im-
proved expression of adhesion molecules: the intercellular 
adhesion molecule-1 (ICAM-1) and vascular cell adhesion 
molecule-1 (VCAM-1) as mediators in development of 
skin allergy caused by giardiasis. Byraktar et al.83 found that 
pro-infl ammatory mediators, such as IL-6, and IL-1β, and a 
chemokine, IL-8 that attracts neutrophils to the site of infec-
tion, were not elevated in giardiasic children without allergy, 
suggesting that these cytokines may have no infl uence on 
immunity to giardiasis. However, in allergy-associated gia-
rdiasis patients, strong correlations between IL-6 and nitric 
oxide were seen. 

The role of transforming growth factor-beta1 (TGF-β1) 
in intestinal parasitic infections has attracted signifi cant at-
tention, as in vitro tests showed that TGF-β1 stimulates the 
isotype switch to IgA, as well as IgA secretion by LPS-stim-
ulated B cells from Peyers patches and spleen.84,85 Knowing 
this peculiar property, Taherkhan et al.86 confi rm that there 
was a relationship between TGF-β1 cytokines polymor-
phism and susceptibility to giardiasis. They found that the 
prevalence of allele C and CC genotypes of TGF-β1 T+869C 
polymorphism was signifi cantly higher in the patients with 
symptomatic giardiasis and these patients had signifi cantly 
lower levels of S-IgA compared to the asymptomatic and 
control groups.

Based in previous report, secretory IgA antibod-
ies have a central role in antigiardial defense. B-cell-

Pavanelli, Gutierrez, Silva et al.
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independent mechanisms also exist and can contribute 
to eradication of the parasite, although their identity and 
physiological importance are poorly understood currently, 
mainly in human models. So, the elucidation of key an-
tigiardial effector mechanisms will be important to under-
stand mucosal immune defense against this parasite and 
suggest new pharmacological targets for drug therapy. 

CONCLUSIONS

A delicate, not completely understood interplay do exist be-
tween the components of immune response and the levels of 
nitric oxide. Vast scientifi c evidence show that NO can exert 
its effects on the immune response either directly or through 
the activity of its derivatives (mainly oxygen and nitrogen re-
active species), which are able to induce structural modifi ca-
tions, thus altering their biological activities. In the same way, 
NO is able to affect the biology of Giardia, either by direct 
toxicity, or through affecting essential metabolites, or even by 
enhancing the immune response against the parasite. Despite 
the potent antigiardial activity of NO, G. lamblia is not sim-
ply a passive target for host-produced NO, but has strategies 
to evade this potential host defense. Studies defi ne NO and 
arginine as central components in a novel cross talk between 
a pathogen and immune response in intestinal epithelium, 
but the balance between giardial arginine consumption and 
epithelial NO production could contribute to the variability 
in the duration and severity of infections by this ubiquitous 
parasite. However, additional studies are required to further 
understand the multiple roles played by NO in giardiasis.
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